

Reversibly Tunable Lower Critical Solution Temperature Utilizing Host–Guest Complexation of Pillar[5]arene with Triethylene Oxide Substituents

Tomoki Ogoshi,* Ryohei Shiga, and Tada-aki Yamagishi

Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

Supporting Information

ABSTRACT: A thermoresponsive macromolecule consisting of 10 outer triethylene oxide groups and a pillar[5]arene core was prepared. The macromolecule showed lower critical solution temperature behavior. Moreover, its clouding point can be reversibly tuned based on the addition of guest and host compounds; the clouding point increased upon addition of a guest didecylviologen salt and decreased when the competitive host cucurbit[7]uril was added.

oly(N-isopropylacrylamide) (pNIPAAm) is a well-known thermoresponsive polymer, showing a lower critical solution temperature (LCST) at 32 °C in aqueous media.¹⁻¹⁸ Using the LCST behavior of pNIPAAm, thermosensitive pNIPAAm-based materials have been prepared for applications such as controlled drug release,² molecular separation,³ and tissue culture substrates.⁴ The next direction in thermosensitive materials was creation of new generation thermosensitive materials possessing additional functions,¹⁹⁻²³ to replace pNIPAAm. In this Communication, we report a new smart thermosensitive macromolecule containing a macrocyclic structure in its core. Pillar[5]arenes²⁴⁻³⁶ (Figure 1a), which are new macrocyclic hosts and were first reported by our group,²⁴ were used as the macrocyclic core. Because of their symmetrical pillar architecture,^{24–26} facile and high-yield $\frac{24}{28-34}$. synthesis,²⁷ interesting host-guest property,^{24,28-34} and planar chirality,³² the chemistry of pillar[5]arenes has developed rapidly. One of the features of pillar[5]arenes is their high functionality.^{34–36} Pillar[5]arenes have 10 reactive sites at their rims, and the presence of functional groups at the reactive sites significantly affects their physical proper-ties.^{28,30,35,36} In the present study, we present a pillar[5]arene derivative bearing triethylene oxide chains (Figure 1a, 2) that exhibits LCST behavior. Because 2 contains the macrocyclic structure of pillar[5]arene, it is able to capture guest molecules. We demonstrate reversible tuning of the LCST using host-guest complexation.

Pillar[5] arenes modified with oligoethylene oxide groups (Figure 1a; 1, n = 1; 2, n = 3) were prepared by etherification of *per*-hydroxylated pillar[5] arene. A model unit was also synthesized³⁷ (Figure 1b, 2-model) to evaluate how a cyclic structure affects the properties of 2. The long triethylene oxide chains of 2 and 2-model made them fully soluble in water at 25 °C. Conversely, 1 with short ethylene oxide chains was insoluble in water. Modification of the long hydrophilic triethylene oxide moieties is necessary to solubilize pillar[5] arene in water.

Figure 1. Chemical structures of (a) pillar[5]arenes modified with oligoethylene oxide groups, (b) unit model, (c) viologen derivatives, and (d) cucurbit[7]uril.

Interestingly, the clear aqueous solution of 2 at room temperature (Figure 2a) became opaque on heating (Figure 2b) and then

Figure 2. Photographs of an aqueous solution of 2 (2 mM) at (a) 25 and (b) 55 $^{\circ}\text{C}.$

became clear again when the solution was cooled. That is, the turbidity change was reversible. This indicates that 2 exhibits LCST behavior in water. This phenomenon was not observed for 2-model even on heating (Figure S3), suggesting that the

Received: January 31, 2012 Published: February 28, 2012

Journal of the American Chemical Society

pillar-shaped macrocyclic structure and modification with 10 triethylene oxide groups led to the LCST behavior. The LCST behavior of **2** can be attributed to the combination of the hydrophilic triethylene oxide moieties with the hydrophobic pillar[5]arene backbone (aromatic and methylene bridges). At temperatures above the clouding point (T_{cloud}), interaction of the hydrophobic groups causes **2** to aggregate and then separate from water. T_{cloud} was determined by the change in transmission at 650 nm on a temperature-controlled UV–vis spectrometer. On heating, T_{cloud} of **2** in 2 mM aqueous solution was found to be 42 °C, with the whole event taking place within 2 °C (Figure 3a,

Figure 3. (a) Temperature dependence of light transmittance of 2 (2 mM) in aqueous solution (red line, heating process; blue line, cooling process). (b) Concentration dependence of the clouding point (T_{cloud}) of **2** in aqueous solution.

red line). The thermal transition of the cooling process was observed at 44 °C (Figure 3a, blue line). Hysteresis between the heating and cooling processes was very narrow (2 °C). Such sharp transition and narrow hysteresis seem to be a common feature of LCST of well-defined ethylene oxide branched macromolecules.²³ As the concentration of **2** increased, T_{cloud} decreased (Figure 3b), indicating that T_{cloud} depended the concentration of **2**. The trend is same with the other molecules showing T_{cloud} .³⁸ The average hydrodynamic diameter ($D_{\rm H}$) of **2** as a function of temperature was investigated by dynamic light scattering (DLS) studies. Below T_{cloud} (25 °C), the $D_{\rm H}$ of **2** was 151 ± 16 nm (Figure S4), indicating that **2** forms an assembled structure. Above T_{cloud} (50 °C), the $D_{\rm H}$ of **2** increased to 799 ± 68 nm (Figure S5), indicating that **2** forms a large aggregate structure above T_{cloud} .

Pillar[5] arenes have a highly symmetrical cylindrical structure with a π -electron-rich cavity, so they are an ideal host for π -electron-poor guests such as viologens, pyridinium cations, and quaternary ammonium salts.^{24,28–34} In this study, water-soluble viologen derivatives such as diethylviologen dibromide (Figure 1c, C2Vio) and didecylviologen dibromide (Figure 1c, C10Vio) were used as guests. Addition of C10Vio to 2 in water changed the color of the solution from clear to yellow, whereas C2Vio did not change the color of the solution of 2 (Figure S6). This indicates that 2 formed a charge-transfer (CT) complex with C10Vio but not with C2Vio. Multiple interactions such as CT and hydrophobic interactions should stabilize the host-guest complex because aqueous media were used as a solvent. In C2Vio, the hydrophobic interaction between C2Vio and 2 should be weaker than that between C10Vio and 2 because of the short hydrophobic alkyl chain of C2Vio compared to C10Vio. Based on the intensities of the CT bands, the stoichiometry of the CT complex determined from a

Job plot was 1:1 (Figure S7), and the association constant (*K*) for the CT complex was $(4.3 \pm 0.5) \times 10^3$ M⁻¹ at 25 °C (Figure S8). Inclusion of the viologen moiety of C10Vio into the cavity of **2** was confirmed by ¹H NMR measurements. When C10Vio was mixed with **2**, upfield shifts were observed for the proton signals from viologen and methylene protons adjacent to N atoms, whereas the other resonance bands hardly changed (Figure S9). The same ¹H NMR spectral changes were also observed for the host–guest complexes between pillar[5]-arene and viologen derivatives.^{24,29,31} These results confirm the formation of a host–guest complex between **2** and C10Vio.

The effect of host–guest complexation on T_{cloud} was investigated. As the concentration of C10Vio increased, T_{cloud} gradually increased while maintaining sharp transitions (Figure 4a).

Figure 4. (a) Temperature dependence of light transmittance of an aqueous solution of 2 (2 mM) upon addition of C10Vio (0–2 mM) on heating. (b) Change in T_{cloud} upon addition of C10Vio and **CB7** to an aqueous solution of 2. (c) Temperature dependence of light transmittance of a mixture of 2 (2 mM) and C10Vio (2 mM) in aqueous solution upon addition of **CB7** (0–5 mM) on heating.

By controlling the amount of C10Vio added, $T_{\rm cloud}$ was successfully tuned from 42 to 60 °C (Figure 4b, blue arrows). K for the complex at $T_{\rm cloud}$ was obtained by extrapolation using van't Hoff analysis (Figure S10). As the temperature increased, K decreased due to a thermal dissociation. However, a high K was maintained even at the maximum $T_{\rm cloud}$ (extrapolated K at 60 °C was $(3.4 \pm 1.3) \times 10^3 \text{ M}^{-1}$). ¹H NMR spectra of these solutions revealed that signals from free C10Vio species were not observed above $T_{\rm cloud}$ (Figure S11). These data indicate that dissociation of the complex does not occur in the range of $T_{\rm cloud}$ investigated. The concentration of salts sometimes affects LCST. However, a change in $T_{\rm cloud}$ was not observed upon addition of C2Vio (Figure S12). Thus, $T_{\rm cloud}$ is independent of the concentration of salts in the range investigated. These results suggest that the observed increase in T_{cloud} upon addition of C10Vio is mainly caused by host–guest complexation. Repulsive forces between the complexed cations might prevent aggregation of 2.³⁹ Therefore, heating at high temperature should be needed to aggregate 2-C10Vio complexes.

Viologen derivatives form highly stable 1:1 host-guest complexes with cucurbit[7]urils (Figure 1d, CB7, K of the complexes with viologen derivatives are generally greater than 10^5 M^{-1}) because of the good fit between the cavity of the host and the cross-section of the viologen.⁴⁰⁻⁴² Thus, we used CB7 as a competitive host to exclude C10Vio from the cavity of 2. When CB7 was added to a solution containing the host-guest complex of C10Vio (2 mM) and 2 (2 mM), the yellow solution derived from the CT complex was diluted (Figure S13), indicating dissociation of the CT complex and association of C10Vio with CB7. Upon addition of CB7, T_{cloud} gradually decreased with sharp transitions (Figure 4c). By controlling the amount of CB7 added, T_{cloud} was able to be tuned from 60 to 47 °C (Figure 4b, red arrows). $T_{\rm cloud}$ did not change by mixing 2 and CB7 in the absence of C10Vio (Figure S14), suggesting that T_{cloud} of 2 is independent of CB7. These results indicate that dissociation of the hydrophilic CT complex between 2 and C10Vio led to the observed decrease of T_{cloud} . Overall, we reversibly controlled T_{cloud} of **2** using the guest C10Vio and the competitive host CB7.

Based on a host-guest system, we demonstrated chemically responsive reversible turbid-to-clear and clear-to-turbid transitions. When a solution of 2 (2 mM) was heated to 55 $^{\circ}$ C (Figure 4b, green circles), the solution became turbid (Figure 5a)

Figure 5. Photographs of (a) 2 (2 mM), (b) an equimolar mixture of 2 (2 mM) and C10Vio (2 mM), and (c) a mixture of 2 (2 mM), C10Vio (2 mM) and CB7 (5 mM) in aqueous solution at 55 °C.

because the sample was heated above T_{cloud} (42 °C). Addition of C10Vio (2 mM) to the mixture at 55 °C (Figure 4b, green squares) caused the solution to change from turbid to clear (Figure 5b) because T_{cloud} of the CT complex of **2** with C10Vio is 60 °C. By mixing **CB7** (5 mM) into the mixture at 55 °C (Figure 4b, green triangles), the clear solution was changed again to turbid (Figure 5c). This is because T_{cloud} of the mixture of **2** (2 mM), C10Vio (2 mM), and **CB7** (5 mM) is 47 °C.

In conclusion, a new type of thermoresponsive material, macrocyclic compound (2) possessing excellent LCST behavior (sharp transition and narrow hysteresis) was successfully synthesized. This is the first examples of a themosensitive macrocyclic molecule, although LCST control by combination of pNIPAAm with host molecules has been reported.^{5–13} Importantly, T_{cloud} of 2 can be readily adjusted from 42 to 60 °C upon addition of the guest C10Vio, and T_{cloud} was reversed back to that of pristine 2 upon addition of competitive host CB7. All systems in this study exhibited excellent thermoresponsive properties based on the host—guest system. The first-generation water-soluble pillar[5]-arenes^{28,30} were charged and required a solution pH some distance

from neutrality, which affected the electrolyte and water hardness, but nonionic water-soluble pillar[5] arene **2** overcomes these limitations and possesses the chemically responsive LCST behavior. Biocompatibility and T_{doud} around body temperature are necessary to use thermosensitive materials as drug delivery systems (DDSs). Because T_{cloud} of **2** could be tuned around body temperature by optimizing its concentration and a large part of **2** was composed of biocompatible oligoethylene moieties, we believe that **2** shows great potential as a DDS. Moreover, the guest molecule C10Vio can be removed from water above T_{cloud} . Thus, the chemically responsive materials demonstrated in this study will be useful for cloud point extraction.

ASSOCIATED CONTENT

Supporting Information

Experimental section, characterization data, temperature dependence of light transmittance, DLS, UV–vis spectra, Job plot, van't Hoff plot, determination of association constants at various temperatures, and ¹H NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

ogoshi@t.kanazawa-u.ac.jp

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by a challenging exploratory research grant (23655210) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES

- (1) Aseyev, V.; Tenhu, H.; Winnik, F. Adv. Polym. Sci. 2006, 196, 1-85.
- (2) Piskin, E. Int. J. Pharm. 2004, 277, 105-118.

(3) Feil, H.; Bae, Y. H.; Feijen, J.; Kim, S. W. J. Membr. Sci. 1991, 64, 283-294.

(4) Takezawa, T.; Mori, Y.; Yoshizato, K. *Biotechnology* **1990**, *8*, 854–856.

(5) Ogoshi, T.; Masuda, K.; Yamagishi, T.; Nakamoto, Y. *Macromolecules* **2009**, *42*, 8003–8005.

(6) Yhaya, F.; Lim, J.; Kim, Y.; Liang, M.; Gregory, A. M.; Stenzel, M. H. *Macromolecules* **2011**, *44*, 8433–8445.

(7) Sambe, L. N.; Stoffelbach, F. O.; Lyskawa, J.; Delattre, F. O.; Fournier, D.; Bouteiller, L.; Charleux, B.; Cooke, G.; Woisel, P. *Macromolecules* **2011**, *44*, 6532–6538.

(8) Bigot, J.; Charleux, B.; Cooke, G.; Delattre, F. O.; Fournier, D.; Lyskawa, J. l.; Sambe, L. N.; Stoffelbach, F. O.; Woisel, P. J. Am. Chem. Soc. 2010, 132, 10796–10801.

(9) Amajjahe, S.; Ritter, H. Macromolecules 2008, 41, 3250-3253.

(10) Koopmans, C.; Ritter, H. J. Am. Chem. Soc. 2007, 129, 3502–3503.

(11) Bigot, J.; Fournier, D.; Lyskawa, J.; Marmin, T.; Cazaux, F.; Cooke, G.; Woisel, P. *Polym. Chem.* **2010**, *1*, 1024–1029.

(12) Rauwald, U.; del Barrio, J; Loh, X. J.; Scherman, O. A. *Chem. Commun.* **2011**, *47*, 6000–6002.

(13) Bigot, J.; Bria, M.; Caldwell, S. T.; Cazaux, F.; Cooper, A.; Charleux, B.; Cooke, G.; Fitzpatrick, B.; Fournier, D.; Lyskawa, J.; Nutley, M.; Stoffelbach, F.; Woisel, P. *Chem. Commun.* **2009**, 5266– 5268.

(14) Plamper, F. A.; Schmalz, A.; Ballauff, M.; Müller, A. H. E. J. Am. Chem. Soc. 2007, 129, 14538–14539.

(15) Mao, H.; Li, C.; Zhang, Y.; Bergbreiter, D. E.; Cremer, P. S. J. Am. Chem. Soc. 2005, 125, 2850–2851.

Journal of the American Chemical Society

- (17) Zhang, Y.; Furyk, S.; Bergbreiter, D. E.; Cremer, P. S. J. Am. Chem. Soc. 2005, 125, 14505-14510.
- (18) Bergbreiter, D. E.; Hughes, R.; Besinaiz, J.; Li, C.; Osburn, P. L. J. Am. Chem. Soc. **2003**, 125, 8244–8249.
- (19) Wang, F.; Klaikherd, A.; Thayumanavan, S. J. Am. Chem. Soc. **2011**, 133, 13496–13503.
- (20) Jia, Z.; Chen, H.; Zhu, X.; Yan, D. J. Am. Chem. Soc. 2006, 128, 8144-8145.
- (21) Aathimanikandan, S. V.; Savariar, E. N.; Thayumanavan, S. J. Am. Chem. Soc. 2005, 127, 14922–14929.
- (22) Betancourt, J. E.; Rivera, J. M. J. Am. Chem. Soc. 2009, 131, 16666-16668.
- (23) Roeser, J.; Moingeon, F.; Heinrich, B.; Masson, P.; Arnaud-Neu, F.; Rawiso, M.; Méry, S. *Macromolecules* **2011**, *44*, 8925–8935.
- (24) Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. J. Am. Chem. Soc. **2008**, 130, 5022–5023.
- (25) Ogoshi, T. J. Incl. Phenom. Macroc. Chem. 2011, DOI: 10.1007/ s10847-011-0027-2.

(26) Cragg, P. J.; Sharma, S. Chem. Soc. Rev. 2012, 41, 597–607.
(27) Ogoshi, T.; Aoki, T.; Kitajima, K.; Fujinami, S.; Yamagishi, T.;

- Nakamoto, Y. J. Org. Chem. 2011, 76, 328-331.
- (28) Ogoshi, T.; Hashizume, M.; Yamagishi, T.; Nakamoto, Y. *Chem. Commun.* **2010**, *46*, 3708–3710.
- (29) Li, C.; Xu, Q.; Li, J.; Yao, F.; Jia, X. Org. Biomol. Chem. 2010, 8, 1568–1576.
- (30) Ma, Y.; Ji, X.; Xiang, F.; Chi, X.; Han, C.; He, J.; Abliz, Z.; Chen, W.; Huang, F. *Chem. Commun.* **2011**, *47*, 12340–12342.
- (31) Strutt, N. L.; Zhang, H.; Giesener, M. A.; Lei, J.; Stoddart, J. F. Chem. Commun. 2012, 48, 1647–1649.
- (32) Ogoshi, T.; Masaki, K.; Shiga, R.; Kitajima, K.; Yamagishi, T. Org. Lett. 2011, 13, 1264–1266.
- (33) Zhang, Z.; Luo, Y.; Chen, J.; Dong, S.; Yu, Y.; Ma, Z.; Huang, F. Angew. Chem., Int. Ed. **2011**, 50, 1397–1401.
- (34) Strutt, N. L.; Forgan, R. S.; Spruell, J. M.; Botros, Y. Y.; Stoddart, J. F. J. Am. Chem. Soc. 2011, 133, 5668-5671.
- (35) Ogoshi, T.; Umeda, K.; Yamagishi, T.; Nakamoto, Y. *Chem. Commun.* **2009**, 4874–4876.
- (36) Ogoshi, T.; Shiga, R.; Hashizume, M.; Yamagishi, T. Chem. Commun. 2011, 47, 6927–6929.
- (37) Winkler, B.; Dai, L.; Mau, A. W. H. Chem. Mater. 1999, 11, 704-711.
- (38) Afroze, F.; Nies, E.; Berghmans, H. J. Mol. Struct. 2000, 554, 55-68.
- (39) Examples of dissociation of the supramolecular assemblies by complexation with charged guest molecules were reported. Ogoshi, T.; Takashima, Y.; Yamaguchi, H.; Harada, A. *Chem. Commun.* **2006**, 3702–3704. Ogoshi, T.; Hashizume, M.; Yamagishi, T.; Nakamoto, Y. *Langmuir* **2010**, *26*, 3169–3173.
- (40) Ong, W.; Gómez-Kaifer, M.; Kaifer, A. E. Org. Lett. 2002, 4, 1791–1794.
- (41) Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem., Int. Ed. **2005**, 44, 4844–4870.
- (42) Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Acc. Chem. Res. 2003, 36, 621–630.